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ABSTRACT
Civic authorities in many Indian cities have a tough time
in garbage collection and as a result there is a pile up of
garbage in the cities. In order to manage the situation, it
is first required to be able to quantify the issue. In this pa-
per, we address the problem of quantification of garbage in a
dump using a two step approach. In the first step, we build
a mobile application that allows citizens to capture images
of garbage and upload them to a server. In the second step,
back-end performs analysis on these images to estimate the
amount of garbage using computer vision techniques. Our
approach to volume estimation uses multiple images of the
same dump (provided by the mobile application) from differ-
ent perspectives, segments the dump from the background,
reconstructs a three dimensional view of the dump and then
estimates its volume. Using our novel pipeline, our exper-
iments indicate that with 8 different perspectives, we are
able to achieve an accuracy of about 85 % for estimating
the volume.

CCS Concepts
•Computing methodologies → Object recognition; Re-
construction;

Keywords
Automatic Segmentation and 3D Reconstruction; Segmen-
tation using Deep Learning, Structure from Motion, Volume
Estimation of Garbage Dumps
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One of the most common problems faced by metropoli-
tan and emerging cities, is the problem of garbage collection
and disposal. In the past century, as the world’s popula-
tion has grown and become more urban and affluent, waste
production has risen tenfold. By 2025 it will double again
[15]. Even in the city Bangalore (India), the local municipal
committee Bruhat Bengaluru Mahanagara Palike (BBMP)
estimates that 3,500 tonnes of garbage is produced by the
city everyday [1]. Despite considerable efforts, nearly 20 per
cent of the waste still remains to be picked or is picked irreg-
ularly, giving the city a despicable look. Many media reports
are presented on these issues and it is a very important topic
not only for the civic authorities, but also for the citizens.
As a result uncollected garbage leads to endemics and other
problems for residents.

To perform image analysis and obtain meaningful insights,
having a dataset of garbage images is necessary. Since there
was no existing dataset of this kind, we have developed an
android application for the purpose of crowd sourcing the
task of data collection and asked users to take 8 GPS tagged
images of a dump from different views going in a clockwise
or anti clockwise manner around the accessible part of the
garbage dump 1.

We propose a zero cost, citizen powered volumetric es-
timation of garbage using our novel pipeline. This would
help the municipality devise an efficient collection route and
also get an estimation of garbage distribution throughout
the city. The pipeline has three main stages - Segmentation,
3D Reconstruction and Volume Estimation.

We use a state of the art convolutional neural network,
AlexNet for segmentation. We also compare the results of
two other approaches, sliding window edge thresholding, and
sliding window classification using feedforward neural net-
works.

The segmented images are then used to generate a 3D
model of the scene using concepts of Structure from Motion
and Multi-view Stereo.

The whole system has been trained to estimate the vol-
umes of complex structures extracted from their noisy envi-
ronments. A high accuracy is not a strong prerequisite for
this project because the volume of garbage heap will always

1We plan to release the dataset once substantial data is col-
lected in the near future



possess a slightly significant error due to the waste items
being spread out on the pile. But an estimation of the sur-
face area and volume of the pile will facilitate in indexing
different dumps by their approximate volumes and help in
formulation of optimised garbage collection routines, hence
aiding the civic authorities .

Details of the segmentation methods are described in sec-
tion 4, 3D reconstruction in section 5, and volume estima-
tion in section 6. In section 7, we evaluate the results of our
pipeline on measured volume.

2. RELATED WORK
Our work is related to several fields in computer vision:

• Object recognition i.e. Segmentation of garbage
dumps from a scene.

Traditional approaches to segmentation, include im-
age clustering [25, 26]. Image regions are clustered
based on pixel intensities using an algorithm like K-
means. This methodology would not work in our case
because the region of interest (garbage dump), has
varying pixel intensities in random distributions (very
high spatial frequency). Also the number of clusters
could not be fixed because the background would keep
changing for every dump. Machine learning is very
popular for pattern recognition and neural networks
are favourable since they learn relevant features on
their own. Deep convolutional networks are being used
for various tasks today [22, 29]. Long et. al. [23] have
designed a fully connected convolutional neural net-
work for per pixel semantic segmentation of objects in
a scene. They used a training set of 8498 images from
the PASCAL VOC dataset [11]. This approach of se-
mantic segmentation would require a lot of images to
train. We did not try this approach because of two rea-
sons, first we did not have enough training data, and
second, we found that our 3D reconstruction algorithm
works better when we provide a little context around
the garbage versus only the exact garbage boundary
as would be in this case. The extra context provides
extra feature points which are used for reconstruction.
The bounding box method that we chose, is inspired
from the work of Szegedy et. al. [33].

• 3D reconstruction using techniques like structure
from motion and multi-view stereo.

Conventional approaches to 3D reconstruction are 3D
scanning, and the use of depth/range cameras, but
they are very costly and cumbersome to use in our case.
On the contrary there are image based approaches like
space carving [20], and structure from motion (SFM)
[14] inspired from multi-view geometry. Space carving
requires prior camera calibrated input images but as
in our case, images are crowd sourced in real world
setting and effective camera calibration is not achiev-
able, thus space carving is not suitable. Thus SFM
is much more promising for the problem at hand. In-
cremental SFM techniques [5, 32] have come a long
way over the last few years and have been successfully
used for the reconstruction of increasingly large photo
collections, like building rome in a day [2]. With the
advent of near linear time incremental SFM techniques

[36], fast image matching and efficient bundle adjust-
ment strategies, state of the art 3D reconstruction is
possible.

• Surface reconstruction for delivering watertight
surfaces which are used to find volume.

Our pipeline shares similarities with a lot of fields in
image-based modeling and metric estimation of sur-
faces. The first activity regarding live 3D reconstruc-
tion on mobile devices appeared in Wendel et al.[35]
on a distributed framework with a micro air instru-
ment variant. A shape-from-silhouette pipeline run-
ning in real time on a mobile phone was presented by
Prisacariu et al. [28]. Despite the impressive perfor-
mance, the method fails to cover the facet of generating
manifold shapes, concavity capturing structures or 3D
blanketing. 3D reconstruction of dense noisy samples
was done before by Tanskanen et al. [34] where scal-
ing was done by sensor tracking. Our project revolves
around crude estimations of garbage heaps and as a
result, an empirical scaling factor easily fits into the
puzzle.

3. PROPOSED PIPELINE AND
SYSTEM OVERVIEW

Here we introduce our novel pipeline for automatic seg-
mentation and 3D reconstruction.

Almost all of the current methods, take a semi- automatic
approach for finding the ROI for 3D modelling. Target cut-
out is done manually using Photoshop or Grabcut like tools
to interactively segment the foreground object in these im-
ages. KinectFusion [16] also talks about real time segmenta-
tion and 3D reconstruction, but segmentation of interested
objects in a scene is done by a user through direct inter-
action. When a user moves an object of interest, changes
are detected in real-time, allowing the repositioned object
to be cleanly segmented from the background model. This
approach cannot be taken in case of static images and thus
requires a robust segmentation algorithm.

In our case study the segmentation algorithm automat-
ically finds the region of interest i.e. the garbage from a
scene, as discussed earlier. Only while training the network,
we need labelled data. Our method can be applied for all
purposes where reconstructing is required only for specific
objects in a scene.

Fig. 1 is an illustrative representation of our pipeline.

4. SEGMENTATION
Before the 3D reconstruction can be performed on the im-

age, preprocessing, like segmenting out the garbage from the
rest of the image is required. We have used a machine learn-
ing approach for this task. We use a bounding box regres-
sion approach using Alex Krizhevsky’s AlexNet [19]. The
results of two other approaches have also been compared to,
segmentation using sliding windows and edge thresholding,
and segmentation using sliding windows and fully connected
neural networks. The results of segmentation were compared
on a test set of 200 images and we found that the AlexNet
performs the best. The results were compared using the
intersection over union method, which is the standard met-
ric to compare bounding box results in competitions like
ILSVRC [30].



Figure 1: Complete proposed pipeline

Figure 2: Results of segmentation using sliding win-
dow and edge thresholding approach. Left image is
original image. Right is image after segmentation.

For the segmentation of the garbage from the rest of the
background, the results of three different methods have been
discussed in the following sections.

4.1 Method 1: Sliding window and edge
thresholding

In this method, a 100 x 100 sliding window is moved over
the entire image. In each grid, the number of edges and cor-
ners are calculated using Canny edge detector [6]. We used
an open source image processing toolkit called OpenCV [4]
for this task. Grids with number of edges greater than a
certain threshold are retained while the other grids are dis-
carded. The idea is that grids containing garbage, will have
a lot of clutter, and hence have a higher spatial frequency.
We hope to segment out the high spatial frequency region
from the low spatial frequency region (background) by look-
ing at the number of edges and corners. We found edges
to be a better metric to compare instead of corners. The
threshold was determined experimentally and was set to 25

edges. This method works quite well in certain scenarios
as is shown in Fig. 2. Gaussian blur was used to smooth
the image before counting edges. This method works well
when the garbage is against a background such as a wall,
but this method fails to perfectly segment out the garbage
when there are complex objects in the background such as
vehicles, trees, dogs, humans etc. The grids with these com-
plex objects also exceed the edge threshold and hence give
an improper segmentation of the garbage. It is because of
these types of failures that we had decided to move to a
machine learning approach.

4.2 Method 2 : Sliding window and fully con-
nected neural network

In order to segment out only the garbage from a scene, we
used a fully connected feedforward neural network. The neu-
ral network will learn the best features representing garbage
instead of handcrafting features (like edge counts) manually.
The same 100 x 100 grid is moved around the image but this
time the grid is passed through a 3 layer neural network with
two outputs, garbage or non garbage. Depending on the out-
put of the network, the grid is retained or discarded. This is
done for all the grids. For training the network, grids from
images where garbage is present (garbage class) were manu-
ally extracted . All other grids were non garbage class. Data
was augmented by flipping the grids horizontally, vertically
and horizontally then vertically. We were able to extract
a total of 1,900 grids containing garbage from a dataset of
450 images of garbage that we collected. After applying the
transformations, the dataset consisted of 7,600 garbage grids
and 18,000 non garbage grids from which 7,600 non garbage
grids were randomly sampled. The neural network used con-
sisted of 3 layers with an architecture of 1024, 512, 2. The
grids were resized to 32 x 32 before being fed into the net-
work. Mini batch stochastic gradient descent, with a batch
of 64 and a learning rate of 0.1 was used. The activation
function used in the first two layers was sigmoid and soft-
max in the last layer. Because the network was only 3 layers,
we trained the network on an Intel 3rd gen core i7 CPU. The



network was trained for 30 epochs. This took roughly one
hour of training time. This method gave us satisfactory re-
sults as is shown in Fig. 3. We found that because of the
sliding window approach used, the black boxes (no garbage)
created by our segmentation was affecting the performance
of the 3D reconstruction. It was due to this reason that we
decided to move to a bounding box approach.

4.3 Method 3 : Bounding box segmentation
using CNN

In this method, we train a state of the art deep convolu-
tional neural network, AlexNet [30] on the task of predict-
ing a bounding box around the garbage using regression. We
used an open source framework called Caffe [17] for this task.
Bounding boxes for around 500 images of garbage were man-
ually drawn and the upper left x-coordinate, y-coordinate,
width and height of the box were recorded. 300 of these
were used for training and 150 for testing. We have used
a modified version of AlexNet with 4 outputs and trained
the network using Euclidean loss for regression. The loss
function represented by E is shown below.

E =
1

2N

N∑
i=1

||x1
i − x2

i ||22

Mini batch stochastic gradient descent with a batch size of
5 was used. Since the task is regression rather than classifi-
cation, we use the ReLU activation function [9]. The input
images were resized to 224 x 224 before being fed into the
network. The network was fine tuned on weights from the
ImageNet dataset [10] (which has 14 million images) as this
is shown to give better performance in [27, 31, 21]. The
network was trained for 180,000 iterations on an NVIDIA
GeForce GTX Titan X GPU which has a memory of 12 Gi-
gaBytes. This took around 14 hours. The training loss graph
against number of iterations is shown in Fig. 4. A learning
rate of 0.001 and a weight decay of 0.1 was used. For valida-
tion, we use the intersection over union method to evaluate
performance. This is the standard metric for bounding box
localisation tasks on challenges such as ILSVRC [30]. This
method checks if the ratio of intersected area to union area
is above a certain threshold (0.5). After 180,000 iterations
of training, we were able to get a mean intersection over
union score of 0.82 on the validation set. We cannot use
this metric for the first two approaches as they do not out-
put bounding boxes. An example of the result on a testing
images is shown in Fig. 5.

5. 3D RECONSTRUCTION
Given a short baseline image sequence I with n frames

taken by a freely moving camera, parameters can be esti-
mated reliably by the SFM techniques.

The set of camera parameters for frame t in an image se-
quence is denoted as C = {K,R, T}, where K is the intrinsic
matrix, R is the rotation matrix, and T is the translation
vector.

We use a typical incremental SFM system, where two view
reconstructions are first estimated upon successful feature
matching between two images, 3D models are then recon-
structed by initializing from good two-view reconstructions,
then repeatedly adding matched images, triangulating fea-
ture matches, and bundle-adjusting the structure and mo-
tion.

Our system employs the SFM method of Wu et al. [36].
We further improve the performance of it by:

• Sorting the images as an ordered sequence according to
incremental image taken, and thereby reduce the com-
putational cost from O(n2) to O(n) in feature match-
ing procedure. This can be done because images are
taken in a sequence by a user and they are GPS tagged.

5.1 Implementation

• Camera information gathering: As focal-length is
especially useful for camera recovery. We extract the
focal length from the EXIF tags of a digital photo and
to convert it to pixel units using the following formula.

F (px) =
I(px) ∗ F (mm)

CCD(mm)

Where I is the image width (px), CCD is the sensor
size (mm) in mobile phones and F is focal length (mm).

• Feature Matching: We first process the image sets
using Wu et al.’s GPU implementation of SIFT [24].

• Sparse Reconstruction: Next we used a multi-core
bundle adjustment algorithm [37] to generate a sparse
3D reconstruction using structure from motion, along
with camera calibration parameters for each image.
These parameters are a focal length f, 3 x 3 camera
rotation matrix R, and 3-vector camera translation t.

• Dense Reconstruction: For the final leg we ap-
ply Furukawa and Ponce’s PMVS algorithm [12, 13]
to generate a dense point reconstruction, The PMVS
algorithm is considered state-of-the-art in the area of
dense reconstruction, and performs very well on even
highly unstructured image sets containing variations
in lighting, image exposure, lens type, etc.

The reconstruction is performed up to an arbitrary scale, so
the distances in the resulting object space do not correspond
to the true distances in real-life space, section 6 which is
also part of our pipeline is devoted to find the exact metric
measurements and then compute volume.

Many sets of segmented garbage images , each with 8 im-
ages in each set and some toy example images had to be
reconstructed to fine tune the scaling factor. Table 1 gives
the time taken for each task. All images have a size resized
to 500 x 500 pixels after segmentation.

The complete 3D Reconstruction was performed on a sys-
tem with 4th Gen Intel Core i7 chip (4 cores clocked @
2.4GHz), 8 GB DDR3L SDRAM @ 1600 MHz and NVIDIA’s
GeForce GT750M GPU of 2GB memory.

6. SURFACE RECONSTRUCTION
The process of obtaining reliable manifold surfaces out

of point sets by triangulation has never proven to provide
results which have conformed to the 3D modeling on a metric
scale. Many parallel experiments were conducted in a setting
which resembled real-world conditions to test the generation
of robust 3d models: A miniature clay idol of the Hindu deity
Krishna, and a plastic box with rounded corners that holds
a bar of soap, a globe, a cubical cardboard box etc. The
process of surface reconstruction had to be executed sans a



Figure 3: Comparison of results of segmentation using sliding windows with edge thresholding vs fully
connected neural network. Left is original image. Center is segmentation result using edge thresholding.
Right is segmentation result using fully connected neural network.

Name of Experiment
Time: Feature
Matching (s)

Time: Sparse + Dense
Reconstruction (s)

Total Time (s)

Garbage Dump 1 1.67 9.86 11.53
Garbage Dump 2 1.83 10.20 12.03
Garbage Dump 3 2.11 12.45 14.56
Krishna Idol (Toy Example) 2.47 15.36 17.83

Table 1: Total time taken for 3D reconstruction

Figure 4: Training loss vs number of iterations
for training of bounding box segmentation using
AlexNet.

Figure 5: Results of segmentation using bounding
box regression on AlexNet on validation image.

360 degree capture of the scene, nor a reliable camera used
for studio purposes.

For all the trials, a variety of mobile phone cameras had
to be used in order to replicate the conditions of the target
application which involves citizens using phones to capture
the heap. The user also had to walk around the objects
of interest, roughly estimating positions for suitable pho-
tographs. 8 images were taken for each trial, where an angle
of approximately 180 degrees of the anterior scene objects
were spanned. After the point clouds were generated, we
had to create a manifold mesh around the cloud to obtain a
watertight object whose volume could then be measured.

6.1 Poisson Disk Sampling
The resulting point clouds from the reconstruction ex-

perimentation resulted in being rarified with a significant
amount of noise . Surface reconstruction shows quicker per-
formances for smaller samples, thus leading to a filtering for
subsamples at a ratio of roughly 1 : 6th the number of points
present in the point cloud, to ease computation. In effect,
the samples are randomly placed with the restriction that
no two samples are closer together than a certain distance.
The Poisson Disk Sampling method was seen to be the best
fit for our point cloud as it has a history of providing evenly
spaced subsamples for non-robust point clouds.

A prior computation of normals for each point was a req-
uisite for meshing in the primitive method. Since this is
an experiment that does not require tailored meshes of ex-
treme precision, the extrapolated normals could be calcu-
lated without exploiting triangle connectivity, with a high
number of nearest neighbours of 500. The viewing position
had to be taken as -2 to develop flipped normals aligned
outward from the scene, which were one of the very few ori-
entations that resulted in a manifold mesh around the noisy
cloud.



Figure 6: Results of surface reconstruction. 1 is the
point cloud from 3D reconstruction, 2 is the pois-
son disk samples, 3 and 4 are poisson and ball pivot
surface reconstructions respectively.

The Poisson subsampling described in [8] was performed
with the help of the open source Meshlab tool [7].

6.2 Poisson Surface Reconstruction
Since the scene was poorly captured a result of the real-

world imitation , the resulting point cloud poisson disk sam-
ples had a high number of holes, non-manifold faces and
edges and considerably large cavities in the structure as seen
in Fig.6, which disallows the generation of a watertight mesh
unlike a point cloud generated in laboratory conditions.

Poisson Surface Reconstruction [18] is a technique which
reconstructs the implicit function f whose value is zero at
the points pi and whose gradient at the points pi equals the
normal vectors nifor a subsample.

The choice of Octree Depth was taken to be as an arbitrar-
ily low number mainly because a very high accuracy in the
measurement of volume of heaps is not a glaring objective,
hardly an obtaining of volume in the required units would
suffice, and also because a higher depth would result in a
very long duration of mesh generation.

6.3 Ball Pivot Point Surface Reconstruction
This was an advancement to the previous method as it

uses a much lighter algorithm called Ball-Pivot Point [3]
with subsequent interpolations. The principle is very sim-
ple: Three points form a triangle if a ball of a user-specified
radius p touches them without containing any other point.
Starting with a seed triangle, the ball pivots around an edge
(i.e., it revolves around the edge while keeping in contact
with the edge’s endpoints) until it touches another point,
forming another triangle. The process continues until all
reachable edges have been tried, and then starts from an-
other seed triangle, until all points have been considered.
The process can then be repeated with a ball of larger ra-
dius to handle uneven sampling densities.

After the summing the time taken by the tedious normal
computation and Poisson Surface reconstruction as Tnc+ps

and comparing it with the direct BP as Tbp , Table 2 clearly
shows that BP is more optimized in performance. This is
because the algorithm runs in linear time, linear in the num-
ber of sample points and linear storage in comparison to the
log-linear system of the Poisson system .

The surface reconstruction stage was carried out on a 6th

Generation Intel Core i5 Processor, an 8GB, DDR3L RAM
@ 1600 MHz and AMD Radeon R5 M335 4GB GPU chip.

7. VALIDATION AND RESULTS
The volume of each garbage dump was measured while the

image dataset was being created. When we were creating
the image dataset, we manually measured the approximate
enclosure boundary volume (length, breadth and height) of
each garbage dump. There is significant room for error in
the experiments since one would never be able to truly de-
termine the volume of trash at a dump until the waste mate-
rial was compressed and measured. For example, our model
cannot estimate the volume of trash concealed by the dump
below the surface level. The target is to estimate the volume
of the imaginary enclosure the garbage dump would lie in
as it would at least serve as an index for further big data
analytics as there is no big data and image analysis done
regarding exposed garbage dumps. Although the enclosure
volume may seem larger than the actual waste volume, resid-
ual waste material which would be segmented out in the first
stage would slightly compensate the gap. The scaling factor
of 0.229 was obtained empirically after thorough experimen-
tal testing on more than 30 garbage dumps of various shapes
and sizes , each located in different locations and environ-
ments (See Table 3 for sample results).

7.1 Comparative Study Results
Here, we give results of our comprehensive study which

backs our assumption to choose certain methods over others
in the different stages of our pipeline.

We chose a garbage dump in Turahalli (a small commune
in Bangalore) to find the percent error, between the actual
and computed volume using different methods from the same
stage. Three different methods were considered for study
in the segmentation/detection stage namely, sliding window
with edge thresholding, with neural networks and bounding
box using CNN and two methods for water tight surface
reconstruction were examined viz. poisson and ball-pivot.
The actual volume of the dump was 2.6721 m3.

A high error of 24.30% was achieved when edge thresh-
olding and poisson reconstruction were used. It dropped
to 22.13% when the same was accompanied with ball-pivot
instead of poisson reconstruction. We attained lower error
percentage values of 19.32 and 16.19 when we used slid-
ing window with neural networks in our first stage. The
former was followed up with poisson and later with ball-
pivot. Shifting gears to the bounding box approach with
CNN features in the initial stage, we arrived at the lowest
error percentages of 14.61 and 12.43, with poisson and ball
pivot respectively.

However this system is not universal enough to estimate
the volume of any object, as the pipeline is complex struc-
tured object specific.

8. CONCLUSIONS
We have presented a methodical pipeline for estimating

the volume of complex random structures like garbage dumps
and heaps using segmentation and dense stereo-based 3D re-
construction in metric units. In order to address the major
challenges posed by the underlying hardware limitations and
to meet the robustness and context specific requirements of



No. of Vertices in
Point Cloud

Normal Computation
Time: Tnc (ms)

Poisson Surface
Reconstruction Time:
Tps (ms)

Tnc+ps (ms)
Ball Point Pivoting
Reconstruction
Time: Tbp (ms)

Garbage Dump (466) 125 379 504 99
Toy Doll (2262) 78 545 623 111
Globe (167) 70 315 385 66
Table Clock (2444) 88 588 676 106
Cardboard Box (893) 79 405 484 94

Table 2: Relationship between computation time and number of subsamples with regard to surface recon-
struction techniques

Location with Coordinates of the Dump
Measured actual
volume (m3)

Computed volume
from pipeline (m3)

Percent Error
(%)

Total Execution
Time (s) Segmentation+
Reconstruction+Volume
estimation

Domlur (12.958688, 77.637766) 1.198 0.999 16.61 2.2 + 243 + 1.5 = 246.7
BTM Layout (12.917430, 77.602048) 3.442 3.029 11.99 2.4 + 257 + 1.7 = 261.1
Marathahalli (12.962009, 77.694047) 0.855 0.982 14.85 2.1 + 248 + 1.4 = 251.5
Nayandanahalli (12.941958, 77.524358) 1.402 1.119 20.18 2.7 + 261 + 1.7 = 265.4

Table 3: Results of Garbage Volume Estimation

the application, we integrated multiple novel solutions. We
put forth a machine learning algorithm to extract an object,
in this case a pile of garbage from the surrounding environ-
ment. Using modules that leverage the GPU the system
for the highly powerful Structure-from-Motion process, we
have accelerated the scene reconstruction. Additionally, we
have explored and compared the different methods used to
reconstruct and mesh a garbage heap in terms of efficiency
because the task of surface reconstruction has to be decided
based on the pattern followed by the point clouds gener-
ated. The pipeline was tested in both indoor and external
settings and mainly garbage heaps in Bangalore city. More-
over, we have provided a method for generation of a dataset
of garbage dumps tagged with volume values, hence open-
ing doors to more big data analytics, image analysis and
primarily the cleansing of the city.
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